1. Computers
  2. Display Drivers
  3. Graphics Cards
  4. Memory
  5. Motherboards
  6. Processors
  7. Software
  8. Storage
  9. Operating Systems


Facebook RSS Twitter Twitter Google Plus


Phoronix Test Suite

OpenBenchmarking.org

SUSE Posts kGraft, Red Hat Posts Kpatch Patches

Linux Kernel

Published on 01 May 2014 12:22 PM EDT
Written by Michael Larabel in Linux Kernel
5 Comments

SUSE developers yesterday posted their sixteen patches for implementing their kGraft live kernel patching mechanism in the mainline Linux kernel as an alternative to Ksplice. Red Hat has immediately followed-up by posting their kernel patches to Kpatch, their new approach to live patching a running Linux kernel.

SUSE announced kGraft back in February as a new way of live-patching the Linux kernel to reduce downtime. In late March they then released the kGraft source code and reiterated their intention to mainline kGraft in the Linux kernel.

Red Hat in early March meanwhile announced Kpatch as their new approach to live kernel patching that was under development prior to knowing about kGraft.

Jiri Slaby of SUSE posted yesterday the kGraft kernel patches under a "request for comments" flag to seek feedback from Linux kernel developers on the work. The kGraft work is spread across 16 patches.

This morning, Red Hat's Josh Poimboeuf countered with their two kernel patches needed to implement Kpatch. Those two patches can be found via the LKML mailing list. Kpatch is served as a self-contained GPL kernel module that doesn't need any core kernel code changes. Red Hat wants to see it merged, or some combination with kGraft.

Josh Poimboeuf's explanation from the Red Hat perspective in comparing against kGraft came down to:
I think the biggest difference between kpatch and kGraft is how they ensure that the patch is applied atomically and safely.

kpatch checks the backtraces of all tasks in stop_machine() to ensure that no instances of the old function are running when the new function is applied. I think the biggest downside of this approach is that stop_machine() has to idle all other CPUs during the patching process, so it inserts a small amount of latency (a few ms on an idle system).

Instead, kGraft uses per-task consistency: each task either sees the old version or the new version of the function. This gives a consistent view with respect to functions, but _not_ data, because the old and new functions are allowed to run simultaneously and share data. This could be dangerous if a patch changes how a function uses a data structure. The new function could make a data change that the old function wasn't expecting.

With kpatch, that's not an issue because all the functions are patched at the same time. So kpatch is safer with respect to data interactions.

Other advantages of the kpatch stop_machine() approach:

- IMO, the kpatch code is much simpler than kGraft. The implementation is very straightforward and is completely self-contained. It requires zero changes to the kernel.

(However a new TAINT_KPATCH flag would be a good idea, and we do anticipate some minor changes to kprobes and ftrace for better compatibility.)

- The use of stop_machine() will enable an important not-yet-implemented feature to call a user-supplied callback function at loading time which can be used to atomically update data structures when applying a patch. I don't see how such a feature would be possible with the kGraft approach.

- kpatch applies patches immediately without having to send signals to sleeping processes, and without having to hope that those processes handle the signal appropriately.

- kpatch's patching behavior is more deterministic because stop_machine() ensures that all tasks are sleeping and interrupts are disabled when the patching occurs.

- kpatch already supports other cool features like:
- removing patches and rolling back to the original functions
- atomically replacing existing patches
- incremental patching
- loading multiple patch modules
We should see soon enough on the kernel mailing list whether kGraft or Kpatch will prevail, otherwise how well the two will work together.

About The Author
Michael Larabel is the principal author of Phoronix.com and founded the web-site in 2004 with a focus on enriching the Linux hardware experience and being the largest web-site devoted to Linux hardware reviews, particularly for products relevant to Linux gamers and enthusiasts but also commonly reviewing servers/workstations and embedded Linux devices. Michael has written more than 10,000 articles covering the state of Linux hardware support, Linux performance, graphics hardware drivers, and other topics. Michael is also the lead developer of the Phoronix Test Suite, Phoromatic, and OpenBenchmarking.org automated testing software. He can be followed via and or contacted via .
Latest Linux Hardware Reviews
  1. Preview: AMD's FX-9590 Eight-Core At Up To 5.0GHz On Linux
  2. Intel Launches The Core i7 5960X, Mighty Powerful Haswell-E CPUs
  3. AMD Radeon R9 290: Gallium3D vs. Catalyst Drivers
  4. AMD Radeon R9 290 Open-Source Driver Works, But Has A Ways To Go
Latest Linux Articles
  1. How Intel Graphics On Linux Compare To Open-Source AMD/NVIDIA Drivers
  2. The Fastest NVIDIA GPUs For Open-Source Nouveau With Steam Linux Gaming
  3. Testing For The Latest Linux Kernel Power Regression
  4. The Most Energy Efficient Radeon GPU For AMD Linux Gaming
Latest Linux News
  1. Nouveau X.Org Driver Released With DRI3+Present, Maxwell, GLAMOR
  2. Microsoft & AMD Release C++ AMP Compiler With Linux Support
  3. AMD, Wine & Valve Dominated August For Linux Users
  4. Linux 3.17-rc3 Kernel Released Back On Schedule
  5. Lennart Poettering Talks Up His New Linux Vision That Involves Btrfs
  6. Mesa 10.3 RC2 Arrives Via Its New Release Manager
  7. Ubuntu 14.10's Lack Of X.Org Server 1.16 Gets Blamed On AMD
  8. MSI Motherboard BIOS Updating Remains A Pain For Linux Users
  9. See How Your Linux System Performs Against The Latest Intel/AMD CPUs
  10. AMD Steppe Eagle Flys To Coreboot
Latest Forum Discussions
  1. Lennart Poettering Talks Up His New Linux Vision That Involves Btrfs
  2. The dangers of Linux kernel development
  3. Updated and Optimized Ubuntu Free Graphics Drivers
  4. AMD Releases UVD Video Decode Support For R600 GPUs
  5. SSD seems slow
  6. Is laptop with Intel CPU and AMD dGPU worth buying considering especially AMD Enduro?
  7. Radeon HD5670 and Ubuntu 14.04
  8. Btrfs Gets Talked Up, Googler Encourages You To Try Btrfs