1. Computers
  2. Display Drivers
  3. Graphics Cards
  4. Memory
  5. Motherboards
  6. Processors
  7. Software
  8. Storage
  9. Operating Systems


Facebook RSS Twitter Twitter Google Plus


Phoronix Test Suite

OpenBenchmarking.org

12-Core ARM Cluster Benchmarked Against Intel Atom, Ivy Bridge, AMD Fusion

Michael Larabel

Published on 14 June 2012
Written by Michael Larabel
Page 9 of 16 - 20 Comments

The first system we have for comparison against the PandaBoard ES hardware is an Intel Atom 330 NetTop from MSI. This system has an Intel Atom 330 that is a dual-core part operating at 1.60GHz plus Hyper Threading to provide four logical cores. The system also has 1GB of RAM, ATI Mobility Radeon HD 4300 graphics, and a 250GB Samsung HDD. This is not the perfect comparison due to the system using an HDD rather than a Secure Digital card, etc, but the results are quite apparent anyhow. The comparison systems were all running stock, clean installations of Ubuntu 12.04 LTS for the respective architecture. All of the systems were also tested without an X.Org Server running.

When the Intel Atom 330 NetTop was idling, 29 Watts was being drawn, which was just below the power of the 12-core ARM cluster.

With the Embarrassingly Parallel workload, the Atom 330 system was burning through 33.6 Watts for the system with the dual-core Atom that also boasts Hyper Threading -- again, not too far off from the power consumption of all six PandaBoard ES units.

The Atom 330 had an EP.C result of 19.7 Mop/s. For comparison, a single PandaBoard ES with two cores being used for the NPB test had an average of 10.3 Mop/s or four cores were at 18.4 Mop/s. In other words, a single 1.2GHz Cortex-A9 core is close to a single core of an Atom 330 x86 processor. Twelve 1.2GHz ARM cores produced 53.2 Mop/s.

When looking at the performance-per-Watt of the Atom 330 against the PandaBoard ES hardware, ARM is an astounding win. EP.C on the Atom 330 averaged 0.59 Mop/s per Watt where as the single PandaBoard ES was nearly three times as efficient with its 1.6 Mop/s per Watt average and the entire 12-core cluster at 1.78 Mop/s per Watt.

Latest Linux Hardware Reviews
  1. Intel Xeon E5-1680 v3 & E5-2687W v3 Compared To The Core i7 5960X On Linux
  2. Intel 120GB 530 Series SSD Linux Performance
  3. Btrfs/EXT4/XFS/F2FS RAID 0/1/5/6/10 Linux Benchmarks On Four SSDs
  4. AMD's Windows Catalyst Driver Remains Largely Faster Than Linux Drivers
Latest Linux Articles
  1. NVIDIA vs. Nouveau Drivers With Linux 3.18 + Mesa 10.4-devel
  2. Is The Open-Source NVIDIA Driver Fast Enough For Steam On Linux Gaming?
  3. Linux 3.18 File-System Performance Minimally Changed But Possible Regressions
  4. AMD Radeon Gallium3D Is Catching Up & Sometimes Beating Catalyst On Linux
Latest Linux News
  1. Linux 3.18-rc6 Released, A Worrisome Regression Remains
  2. HandBrake 0.10 Brings H.265 & VP8 Encoders
  3. Gngr: A New Web Browser Focused On Privacy
  4. Linux 3.18 Kernel: Not Much Change With Intel Haswell Performance
  5. More File-System Tests Of The Linux 3.18 Kernel
  6. Using NVIDIA's NVENC On Linux With FFmpeg
  7. There's Talk Again About An "Open To The Core" Ubuntu Laptop
  8. PowerVR SGX Driver Code Gets Leaked
  9. V2 Of KDBUS Published For Linux Kernel Review
  10. VirtualBox 4.3.20 Arrives, Still No Sign Of VirtualBox 4.4
Latest Forum Discussions
  1. PulseAudio 6.0 Is Coming & Other Linux Audio Plans For The Future
  2. Debian Developer Resigns From The Systemd Maintainership Team
  3. Roadmap to Catalyst 14.10 ?
  4. Updated and Optimized Ubuntu Free Graphics Drivers
  5. Cant get working Kaveri APU - A10-7850k
  6. Script for Fan Speed Control
  7. Debian Init System Coupling Vote Results
  8. The Slides Announcing The New "AMDGPU" Kernel Driver