1. Computers
  2. Display Drivers
  3. Graphics Cards
  4. Memory
  5. Motherboards
  6. Processors
  7. Software
  8. Storage
  9. Operating Systems


Facebook RSS Twitter Twitter Google Plus


Phoronix Test Suite

OpenBenchmarking.org

Running The NVIDIA GeForce GTX 680 On An Open-Source Driver

Michael Larabel

Published on 26 April 2012
Written by Michael Larabel
Page 1 of 4 - 13 Comments

Thanks to clean-room reverse-engineering, it is already possible to run the NVIDIA GeForce GTX 680 "Kepler" graphics card on a fully open-source graphics driver complete with OpenGL acceleration. Here are the first benchmarks of this work-in-progress, community-created open-source GeForce 600 series graphics driver.

As mentioned on the NVIDIA GeForce GTX 680 launch-day back in March, the Nouveau project that seeks to clean-room reverse-engineer the closed-source NVIDIA driver in order to write an open-source alternative, had a huge set of surprises. Two of the Nouveau developers managed to get their hands on two GeForce GTX 680 graphics cards before launch. As a result, and since the NVIDIA driver changes from the GeForce 400/500 "Fermi" to GeForce 600 "Kepler" series were not too invasive, they managed same-day open-source driver support.

The Nouveau developers already merged their Kepler driver changes into the Linux kernel and then once the Nouveau libdrm re-write landed in mid-April, they merged their Nouveau Kepler Gallium3D code. This published code already allows for OpenGL 2.1 acceleration on Kepler graphics processors with this fully open-source driver, but there is still a lot of work left.

Like the other GeForce hardware on the Nouveau driver, the developers still working out proper re-clocking support, proper power/fan management, OpenGL 3.0+ support, merging OpenCL, etc. Additionally, the open-source Kepler support currently requires closed-source firmware for operation. In order to obtain this Kepler firmware/microcode, the official NVIDIA Linux driver must first be loaded on the hardware while running MMIOtrace within the Linux kernel to trace register writes, following by dumping the traces back into certain files in order to come up with this "FUC" microcode. This is a temporary issue and in a future Linux kernel release there should be a better solution, similar to the initial Nouveau Fermi FUC microcode situation.

<< Previous Page
1
Latest Linux Hardware Reviews
  1. NVIDIA GeForce GTX 970 Offers Great Linux Performance
  2. CompuLab Intense-PC2: An Excellent, Fanless, Mini PC Powered By Intel's i7 Haswell
  3. From The Atom 330 To Haswell ULT: Intel Linux Performance Benchmarks
  4. AMD Radeon R9 285 Tonga Performance On Linux
Latest Linux Articles
  1. 6-Way Ubuntu 14.10 Linux Desktop Benchmarks
  2. Ubuntu 14.10 XMir System Compositor Benchmarks
  3. Btrfs RAID HDD Testing On Ubuntu Linux 14.10
  4. Ubuntu 14.10 Linux 32-bit vs. 64-bit Performance
Latest Linux News
  1. Mono Brings C# To The Unreal Engine 4
  2. Coreboot Now Has Support For Intel Broadwell Hardware
  3. Enlightenment's EFL 1.12 Alpha Has Evas GL-DRM Engine, OpenGL ES 1.1 Support
  4. GTK+ Lands Experimental Backend For Mir Display Server
  5. Ubuntu 14.10 Officially Released
  6. Mesa 10.4 Might Re-Enable HyperZ For R600g/RadeonSI
  7. Intel GVT-g GPU Virtualization Moves Closer
  8. GTK+ 3.16 To Bring Several New Features
  9. Debian 8.0 Jessie Has Many Multimedia Improvements
  10. What Linux Benchmarks Would You Like To See Next?
Latest Forum Discussions
  1. Linux hacker compares Solaris kernel code:
  2. Advertisements On Phoronix
  3. HOPE: The Ease Of Python With The Speed Of C++
  4. Updated and Optimized Ubuntu Free Graphics Drivers
  5. Users/Developers Threatening Fork Of Debian GNU/Linux
  6. Ubuntu 16.04 Might Be The Distribution's Last 32-Bit Release
  7. AMD Releases UVD Video Decode Support For R600 GPUs
  8. Proof that strlcpy is un-needed