1. Computers
  2. Display Drivers
  3. Graphics Cards
  4. Memory
  5. Motherboards
  6. Processors
  7. Software
  8. Storage
  9. Operating Systems


Facebook RSS Twitter Twitter Google Plus


Phoronix Test Suite

OpenBenchmarking.org

Multi-Core Scaling Performance Of AMD's Bulldozer

Michael Larabel

Published on 26 October 2011
Written by Michael Larabel
Page 2 of 7 - 20 Comments

The AMD FX-8150 (Bulldozer), dual AMD Opteron 2384 (Shanghai), Intel Core i5 2500K (Sandy Bridge), Intel Core i7 2630QM (Sandy Bridge), and Intel Core i7 990X (Gulftown) CPUs were used for these multi-core scaling tests. Each processor was tested with 1/2/4/6/8/12 threads enabled, up to the maximum number of logical cores offered by each processor.

All systems were running Ubuntu 11.10 64-bit for this testing with a near-final Linux 3.1 kernel that did contain the IC aliasing patch from AMD that's specific to the Family 15h (Bulldozer) CPUs. The hardware configurations remain pretty much the same as the results from Monday. As always, this testing was all facilitated by the Phoronix Test Suite so it was fully automated and reproducible. You can run a similar test yourself and compare the results directly to the numbers in this article by running phoronix-test-suite benchmark 1110227-AR-AMDSCAL0184. With the numbers on OpenBenchmarking.org, the results from all of these processors were normalized.

With the results normalized by the Phoronix Test Suite / OpenBenchmarking.org, in the graphs about to be displayed, each CPU has a value of 1.0 when only one core is enabled (since all of these tests are very well multi-threaded under Linux, so obviously with just one core it's the slowest) and then with multiple threads/cores, those results are all relative to the single-core result of that individual processor.

In other words, it should be a very fair game in looking at how well each is scaling with multiple threads. For those interested in the raw results, they can be obtained from OpenBenchmarking.org using the 1110227-AR-AMDSCAL0184 ID. Also to note is that when the results are normalized, for tests where normally the results are produced as "less is better" (e.g. time to complete XXX task), those numbers are inverted before being normalized. It is just a matter of checking a box within OpenBenchmarking.org to achieve this, among its many other features it has now and especially more advancements coming soon.

Latest Linux Hardware Reviews
  1. MSI X99S SLI PLUS On Linux
  2. NVIDIA GeForce GTX 970 Offers Great Linux Performance
  3. CompuLab Intense-PC2: An Excellent, Fanless, Mini PC Powered By Intel's i7 Haswell
  4. From The Atom 330 To Haswell ULT: Intel Linux Performance Benchmarks
Latest Linux Articles
  1. RunAbove: A POWER8 Compute Cloud With Offerings Up To 176 Threads
  2. 6-Way Ubuntu 14.10 Linux Desktop Benchmarks
  3. Ubuntu 14.10 XMir System Compositor Benchmarks
  4. Btrfs RAID HDD Testing On Ubuntu Linux 14.10
Latest Linux News
  1. openSUSE Factory & Tumbleweed Are Merging
  2. More Fedora Delays: Fedora 21 Beta Slips
  3. Mono Brings C# To The Unreal Engine 4
  4. Coreboot Now Has Support For Intel Broadwell Hardware
  5. Enlightenment's EFL 1.12 Alpha Has Evas GL-DRM Engine, OpenGL ES 1.1 Support
  6. GTK+ Lands Experimental Backend For Mir Display Server
  7. Ubuntu 14.10 Officially Released
  8. Mesa 10.4 Might Re-Enable HyperZ For R600g/RadeonSI
  9. Intel GVT-g GPU Virtualization Moves Closer
  10. GTK+ 3.16 To Bring Several New Features
Latest Forum Discussions
  1. Ubuntu 16.04 Might Be The Distribution's Last 32-Bit Release
  2. Updated and Optimized Ubuntu Free Graphics Drivers
  3. Linux hacker compares Solaris kernel code:
  4. HOPE: The Ease Of Python With The Speed Of C++
  5. Advertisements On Phoronix
  6. Users/Developers Threatening Fork Of Debian GNU/Linux
  7. AMD Releases UVD Video Decode Support For R600 GPUs
  8. Proof that strlcpy is un-needed